ML2, Summer 2020,

Exercise 2, Supervised structured learning

2.1. The joint probability in the variables $x 1, \ldots, x 7$ shall be given as
$p(x 1, x 2, x 3, x 4, x 5, x 6, x 7)=p(x 1) p(x 3) p(x 7) p(x 2 \mid x 1, x 3) p(x 5 \mid x 7, x 2) p(x 4 \mid x 2) p(x 6 \mid x 5, x 4)$.
Draw the directed graphical model (DGM) for this joint probability!

Solution:

2.2. Write down the joint probability for the DGM given in the pictures:

Solution:
$p(x 1) p(x 3 \mid x 1) p(x 2 \mid x 1) p(x 4 \mid x 2, x 3)$

$$
\mathrm{p}(\mathrm{x} 1) \mathrm{p}(\mathrm{x} 2 \mid \mathrm{x} 1) \mathrm{p}(\mathrm{x} 3 \mid \mathrm{x} 2) \mathrm{p}(\mathrm{x} 4 \mid \mathrm{x} 3)
$$

2.3. Max marginal inference in chains

A Bus goes from your home to the university where you leave it at the 4th stop.
With certain probabilities the bus arrives on time a the stops x_{i}. Calculate these probabilities given the directed graphical model (DGM):

Algorithm for marginal computation ("Sum-Product Message Passing")

1. Compute Messages from right to left \qquad
2.. Read out all marginals
and the following (conditional) probability tables $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}-1}\right)$ ($\mathrm{x}=0$ means late, $\mathrm{x}=1$ on time):

x 1	
0	0,29
1	0,71

$\mathrm{x} 2 \mid \mathrm{x} 1$ x 2	$\mathrm{x} 1=0$	$\mathrm{x} 1=1$
0	0,39	0,2
1	0,61	0,8

$\mathrm{x} 3 \mid \mathrm{x} 2$ x 3	$\mathrm{x} 2=0$	$\mathrm{x} 2=1$
0	0,77	0,51
1	0,23	0,49

$\mathrm{x} 4 \mid \mathrm{x} 3$ x 4	$\mathrm{x} 3=0$	$\mathrm{x} 3=1$
0	0,11	0,66
1	0,89	0,34

(equivalently: What is the maximum marginals solution of this probability distribution?)

Solution:
$p(x 1) p(x 2 \mid x 1) p(x 3 \mid x 2) p(x 4 \mid x 3)$

$$
\begin{aligned}
& p\left(x_{4}\right)=\sum_{x_{3}} p\left(x_{4} \mid x_{3}\right) p\left(x_{3}\right)=\sum_{x_{3}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& p\left(x_{1}=1\right)=0.71 \\
& p\left(x_{2}=1\right)=p\left(x_{2}=1 \mid x_{1}=0\right) p\left(x_{1}=0\right)+p\left(x_{2}=1 \mid x_{1}=1\right) p\left(x_{1}=1\right) \\
& \quad=0.61 \cdot 0.29+0.71 \cdot 0.8=0.745 \\
& p\left(x_{2}=0\right)=0.255 \\
& p\left(x_{3}=1\right)=0.424 \\
& p\left(x_{4}=1\right)=0.657
\end{aligned}
$$

2.4. Factor graphs

For the chain in 2.2: Draw the faktor graph and write down the formula that corresponds to this factor graph. The conditional probabilities from the directed graphical model are inserted as factors here.
Solution:

$$
p\left(x_{1}, x_{2,} x_{3}, x_{4}\right)=\psi\left(x_{1}\right) \psi\left(x_{1}, x_{2}\right) \psi\left(x_{2}, x_{3}\right) \psi\left(x_{3}, x_{4}\right)
$$

(already normalized)

2.5. Let a factor be

$$
\psi\left(x_{1}, x_{2}\right)=\left\{\begin{array}{c}
x_{1}+x_{2} \mid 0 \leqslant x_{1}, x_{2} \leqslant 2 \\
0| | x_{1}, x_{2}<0 ; x_{1}, x_{2}>2
\end{array}\right\} \text {. There are no more factors. }
$$

Which distribution $p\left(x_{1}, x_{2}\right)$ follows from that factor?

Solution:

Normalization is needed:

$$
\begin{gathered}
f=\int_{0}^{2} \int_{0}^{2}\left(x_{1}+x_{2}\right) d x_{1} d x_{2}=8 \\
p\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\left.\frac{x_{1}+x_{2}}{8} \right\rvert\, 0 \leqslant x_{1}, x_{2} \leqslant 2 \\
0 & \mid x_{1}, x_{2}<0 ; x_{1}, x_{2}>2
\end{array}\right\}
\end{gathered}
$$

2.6. Given is the following energy function

(of a Gibbs-Boltzmann-Distribution):

Calculate the MAP solution with ICM.
Solution: ICM for this task is explained in this video. As mentioned at the end of the video: start with another initialization and find out if you get the same solution.

